2018年西师大版六年级数学下册《第三单元整理与复习》教案设计(2)
在这里使学生明白比表示两个数,有两项;比例表示两个比相等,有四项。
(2)完成练习十四第3题。
教师:什么叫做解比例?
学生在练习本上练习,指名板演,学生练习后讲评。
2.正、反比例关系的判断
(1)判断下面各题中两种量是否成比例。如果成比例,成什么比例?
①正方形的边长与周长。
②行驶一段路程,车轮的直径与车轮转过的转数。
③y=5x,y和x。
④yx=24,y和x。
(2)说出下列各组中的三种量在什么条件下能组成什么比例关系。
①速度,时间,路程。
②汽车每次运货吨数,运货的次数和运货的总吨数。
③三角形的底、高和面积。
(3)说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?
梳理判断两种量是否成正(反)比例的思考步骤。
①先找出两种相关联的量和一个定量。
②根据两种相关联的量之间的数量关系,列出关系。
③根据正、反比例的意义,判断比例关系。
(4)用比例知识解决下面的问题(练习十四第6题)。
①学校举行方阵团体操表演,排成5列需要90人,排成24列,需要多少人?
②学校举行方阵团体操表演,如果每列16人,要排27列,如果每列18人,要排多少列?
教师:说一说,用比例知识解答应用题的关键是什么?解题的步骤有哪些?注意什么问题?
学生1:设所求问题为x。
学生2:判断题中的两个相关联的量是否成比例关系及成什么比例关系。
学生3:列出比例式。
学生4:解比例,验算,写答语。
教师:用比例知识解答应用题的关键是正确判断题中两种相关联的量成什么比例关系,所以解题时要认真审题,做出正确判断。
四、拓展应用练习
(1)指导学生完成练习十四第9题。
学生独立完成,教师巡视,集体评议。
教师:航程和相对应的飞行时间的比值表示什么?成什么比例?为什么?
教师:用图像把它们的变化规律表示出来。
教师:观察图像有什么特点?
使学生认识到:图像是一条直线。从这个图像可以直观看到航程和相对应的飞行时间的变化情况,航程增加,所需飞行时间也随着增加,航程减少,所需飞行时间也随着减少。
教师:观察图像,估计飞行2 000千米需要多少时间?
教师:根据图像估一下,7时大约飞行多少千米?
学生回答,教师可以通过课件同步显示。
(2)完成练习十四第10题。
五、全课小结,评价
今天我们一起进行了正、反比例这一单元的整理与复习,你有什么收获?还有哪些不明白的?